ICESat-2-SIPS-SPEC-1601 Draft

# November 13, 2017

ICE, CLOUD, and Land Elevation Satellite (ICESat-2) Project

# Algorithm Theoretical Basis Document (ATBD) For

# **ATLAS Level 1A Processing**

Prepared By: John DiMarzio /SGT/ Code: 615 David Hancock /SGT/ code 615



Goddard Space Flight Center Greenbelt, Maryland

National Aeronautics and Space Administration

CHECK https://icesatiimis.gsfc.nasa.gov TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.

### Abstract

This document describes the theoretical basis of the Level 1A processing algorithms and the L1A product that is produced by the ICESat-2 mission. It includes descriptions of the parameters that are provided and the derivation of these ICESat-2 parameters.

## **CM** Foreword

This document is an Ice, Cloud, and Land Elevation (ICESat-2) Project Science Office controlled document. Changes to this document require prior approval of the Science Development Team ATBD Lead or designee. Proposed changes shall be submitted in the ICESat-II Management Information System (MIS) via a Signature Controlled Request (SCoRe), along with supportive material justifying the proposed change.

In this document, a requirement is identified by "shall," a good practice by "should," permission by "may" or "can," expectation by "will," and descriptive material by "is."

Questions or comments concerning this document should be addressed to:

ICESat-2 Project Science Office Mail Stop 615 Goddard Space Flight Center Greenbelt, Maryland 20771

# Preface

This document is the Algorithm Theoretical Basis Document for the ATLAS Level 1A processing to be implemented at the ICESat-2 Science Investigator-led Processing System (SIPS). The SIPS supports the ATLAS (Advance Topographic Laser Altimeter System) instrument on the ICESat-2 Spacecraft and encompasses the ATLAS Science Algorithm Software (ASAS) and the Scheduling and Data Management System (SDMS). The science algorithm software will produce Level 1 through Level 3 standard data products as well as the associated product quality assessments and metadata information.

The ICESat-2 Science Development Team, in support of the ICESat-2 Project Science Office (PSO), assumes responsibility for this document and updates it, as required, to meet the needs of the ICESat-2 SIPS. Reviews of this document are performed when appropriate and as needed updates to this document are made. Changes to this document will be made by complete revision.

Changes to this document require approval of the Change Authority listed on the signature page. Proposed changes shall be submitted to the ICESat-2 PSO, along with supportive material justifying the proposed change. The PSO will submit the ATBD to the ICESat-2 MIS as a SCoRe.

Questions or comments concerning this document should be addressed to:

Thorsten Markus, ICESat-2 Project Scientist

or Tom Neumann, ICESat-2 Deputy Project Scientist Mail Stop 615 Goddard Space Flight Center Greenbelt, Maryland 20771

## **Review/Approval Page**

#### Prepared by:

John DiMarzio ICESat-2 SIPS Program Manager SGT, Inc NASA/GSFC Code 615

#### Reviewed by:

Bea Csatho ICESat-2 Science Definition Team Lead University at Buffalo Tom Neumann ICESat-2 Deputy Project Scientist NASA/GSFC Code 615

#### Approved by:

Thorsten Markus ICESat-2 Project Scientist NASA/GSFC Code 615

\*\*\* Signatures are available on-line at: <u>https:///icesatiimis.gsfc.nasa.gov</u> \*\*\*

# Change History Log

| Revision<br>Level | DESCRIPTION OF CHANGE                                                                                                     | SCoRe<br>No. | Date<br>Approved |
|-------------------|---------------------------------------------------------------------------------------------------------------------------|--------------|------------------|
| 1.0               | Initial Release                                                                                                           |              |                  |
| 1.0<br>2.0        | Initial Release<br>Updated November 2017. Changes reflect as build code<br>and shown as tracked changes with in the text. |              |                  |
|                   |                                                                                                                           |              |                  |

# List of TBDs/TBRs

| Item<br>No. | Location | Summary | Ind./Org. | Due Date |
|-------------|----------|---------|-----------|----------|
|             |          |         |           |          |
|             |          |         |           |          |
|             |          |         |           |          |
|             |          |         |           |          |
|             |          |         |           |          |
|             |          |         |           |          |
|             |          |         |           |          |
|             |          |         |           |          |
|             |          |         |           |          |
|             |          |         |           |          |

# **Table of Contents**

| Abstract     |                                     | ii   |
|--------------|-------------------------------------|------|
| CM Forewor   | d                                   | iii  |
| Preface      |                                     | iv   |
| Review/App   | roval Page                          | v    |
| Change Hist  | ory Log                             | vi   |
| List of TBDs | /TBRs                               | vii  |
| Table of Cor | ntents                              | viii |
| 1.0 INTR     | ODUCTION                            | 12   |
| 2.0 OVEF     | RVIEW AND BACKGROUND INFORMATION    | 13   |
| 2.1 Bac      | ckground                            | 13   |
| 2.2 Ref      | formatted Telemetry (ATL01/L1A)     | 14   |
| 2.3 Ref      | ferences                            | 15   |
| 3.0 ATL0     | 1 Product Description               | 17   |
| 3.1 ATI      | L01 Time of Day                     | 17   |
| 3.2 ATI      | LAS Telemetry                       | 17   |
| 3.2.1        | SM-HK data Packet                   | 17   |
| 3.2.2        | PCE Altimetry Science Data Packet   | 18   |
| 3.2.2.1      | 1 Transmit Start Time Measurements  | 18   |
| 3.2.2.2      | 2 Received Photon Time Measurements | 18   |
| 3.2.3        | PCE Algorithm Science Packet        | 18   |
| 3.2.4        | PCE 1 PPS time at the tone Packet   | 18   |
| 3.2.5        | PCE Atmospheric Histogram Packet    | 19   |
| 3.3 LF       | RS Telemetry                        | 19   |
| 3.4 Spa      | acecraft Telemetry                  | 19   |
| 3.5 Oth      | ner inputs                          | 20   |
| 4.0 ALGO     | DRITHM THEORY                       | 21   |
| 4.1 ATI      | LAS Telemetry                       | 21   |
| 4.1.1        | ATLAS Instrument                    | 21   |

|     | 4.1.2   | LRS Instrument                               |    |
|-----|---------|----------------------------------------------|----|
|     | 4.1.2.  |                                              |    |
|     | 4.1.2.  |                                              |    |
| 4.  | 2 Sp    | acecraft                                     |    |
| 5.0 | ALGO    | ORITHM IMPLEMENTATION                        | 23 |
| 5.  | 1 Ou    | tline of Procedure                           | 23 |
|     | 5.1.1   | Input Variables                              | 23 |
|     | 5.1.1.  | 1 Parameters Required from ICESat-2          |    |
| Sp  | pacecra | ft Ancillary Science Data                    |    |
|     | 5.1.1.  | 2 Parameters Required from Ancillary Sources |    |
|     | 5.1.1.  | 3 Output Parameters                          |    |
|     | 5.1.2   | Processing Procedures                        |    |
|     | 5.1.2.  | 1 L1A Geolocation                            |    |
|     | 5.1.2.  | 2 ATLAS Instrument                           |    |
|     | 5.1.2.  | 2.1 L1A processing algorithms                |    |
|     | 5.1.2.  | 2.2 L1A user guide notes                     |    |
|     | 5.1.2.  | 3 LRS Instrument                             |    |
|     | 5.1.2.  | 4 Spacecraft Data                            |    |
| 5.  | 2 Va    | riance or Uncertainty of Estimates           |    |
| 5.  | 3 Nu    | merical Computation Considerations           |    |
|     | 5.3.1   | Programmer/Procedural Considerations         |    |
|     | 5.3.2   | Calibration and Validation                   |    |
|     | 5.3.3   | Quality Control and Diagnostics              |    |
| 6.0 | DATA    | A QUALITY AND BROWSE                         |    |
| 6.  | 1 Da    | ta Quality                                   |    |
|     | 6.1.1   | Packet checksum                              |    |
|     | 6.1.1.  |                                              |    |
|     | 6.1.1.  | -                                            |    |
|     | 6.1.2   | . Packet count                               |    |
|     | 6.1.2.  |                                              |    |
|     |         | <u>ل</u>                                     |    |

| 6.1.2.2 Quality Criteria                     |
|----------------------------------------------|
| 6.1.3 Received Photons41                     |
| 6.1.3.1 Processing                           |
| 6.1.3.2 Quality Criteria                     |
| 6.2 Browse                                   |
| 6.2.1.1 Received Photons                     |
| 6.2.1.2 Reference Track                      |
| 7.0 TEST DATA AND RESULTS                    |
| 7.1 Test Data 1 42                           |
| 7.1.1 Source                                 |
| 7.1.2 Results                                |
| 7.2 Test Data 2 42                           |
| 7.2.1 Source                                 |
| 7.2.2 Results                                |
| 8.0 CONSRAINTS, LIMITATIONS, AND ASSUMPTIONS |
| 9.0 GLOSSARY/ACRONYMS 44                     |
|                                              |

#### **List of Figures**

| Figure                                              | <u>Page</u> |
|-----------------------------------------------------|-------------|
| Figure 3-1 Top-level Summary of the Spacecraft Data | 20          |
| Figure 5-1 TAMS Images at LRS                       | 5520        |

#### List of Tables

#### <u>Table</u>

# Table 5-1 ICESat-2 telemetry APIDsError! Bookmark not defined.Table 5-2 Ancillary Packet Size (Spacecraft Packet 1)30Table 5-3 Ancillary Packet Size (Spacecraft Packet 2)31Table 5-4 Ancillary Packet Size (Spacecraft Packet 3)32Table 5-5 Ancillary Packet Size (Spacecraft Packet 4)33

Page

#### 1.0 INTRODUCTION

This Algorithm Theoretical Basis Document (ATBD) describes the processing to create the Decommutated Telemetry Level 1A (L1A) data product (ATL01) from the ATLAS Level 0 (L0) data (ATL00) received from EOS Data and Operations System (EDOS) and include the spacecraft ancillary science data packets. The ICESat-2 ATL01 product output by this process is an HDF5 formatted version of all of the ICESat-2 Level 0 data and will be used as input for higher-level science data processing.

Section 2 provides an overview of the decommutation process and more detail on the parameters that reside in the product.

Section 3 provides a more in-depth description of the algorithms used in the derivation of the L1A product.

Section 4 describes the specific implementations of the algorithms that are relevant to the development of the processing code. Included here are inputs, outputs and algorithmic details.

Section 5 provides the processing requirements for data quality monitoring and control. There are quality assessments of the key parameters to provide criteria for automatic quality control to facilitate timely distribution of the product to the higher level processing and users. Summary statistics or images that allow users to easily evaluate (or Browse) whether the data would be useful and of quality for their research. Also the summaries aid in the quick approval or disapproval of data products to public distribution.

Section 6 describes the testing and validation procedures that are planned.

#### 2.0 OVERVIEW AND BACKGROUND INFORMATION

The initial process in the conversion of raw telemetry data to science enabling products is the Level 1A conversion described herein. The process takes the science (X-band telemetry from the spacecraft) downlinked Application Packet IDs (APIDs) from the EDOS Level Zero Processing Facility (LZPF), decompresses, time aligns, and reformats the data to HDF5 and creates the Level 1A ICESat-2 ATL01 product. The APIDs include all the ATLAS Science data (including laser Reference System, LRS) and the Spacecraft science ancillary data. The ATL01 product is intended for input to the Level 1B processing and for use by researchers who want access to the Level 0 telemetry. It gives access to all of the pertinent information from the ATLAS altimetry, atmosphere, laser reference system, housekeeping data and calibration mode data and the spacecraft ancillary science data (GPSR, ACS, IMU and location) in a bit-decompressed time-aligned HDF5 formatted data product.

#### 2.1 Background

There are a number of APIDs for the ATLAS, the LRS, and the spacecraft. Each APID is a specific defined collection of data parameters normally in raw counts and compressed into as few bits as possible to reduce the downlink bandwidth. EDOS collects all the telemetry packets for each specific APID into a single file that is time ordered with any duplications removed. A specific time period of such data is collected into a Production Data Set (PDS) for delivery to SIPS. ICESat-2 expects the normal PDS to cover two hours of data. EDOS can also create Expedited Data Sets (EDS), which are similar to the PDS but are created from data as soon as available for some requested time and not for specific elapsed time period. EDS may contain duplicate data packets.

The ATLAS altimeter data will consist of a number of APID packets. Unique APID dataset packets will be at a fixed rate. The Altimeter Science Packet is a 50 Hz packet that contains the 200 transmit times of each pulse and receive times of each photon in a ground track (one strong beam and one weak beam). Since it is unknown how many photons will be received it uses the continuation ability to downlink as little or much as needed. The time of day correlation to the transmit time and GPS time are in another APID with packets at 1 Hz. The atmosphere histograms for each track will have their unique APID provided at 25 Hz.

The spacecraft data has four downlinked packet types (APIDs). Each APID will contain the sub packet data related to specific subsystems like GPS, IMU or ACS.

The L1A processing will decompress all parameters only for specificselected packets that are needed by the science processing and engineering monitoring that were packed in order to conserve space in the downlinked telemetry. All data will be and placed them into standard HDF variable types. Each parameter will be time aligned within an HDF group that represents the APID and placed on a granule for specific time periods. For example if EDOS makes a PDS (file) for each APID that covers two hours there could be as many as 50 files delivered each with different start/stop times. The HDF L1A product will be sorted out into time-aligned packets on the HDF L1A product. Examples of packets that will not be decompressed are the flight

software diagnostic and memory dump packets that are not use in the processing to create the ATL02 (L1B) product. The L1A processing would merge all the data from the 50 APID files for some period like 10 minutes into one file that contains the information for that period and the parameters will be in a decompressed form ready for easy processing when used as input to the unit conversion and calibration Science Unit Converted Telemetry (L1B) processing.

Some parameters will be converted to engineering units to perform time alignment, data quality and for higher level processing and will be on the L1A product. The product will also still contain their decompressed unconverted value.

#### 2.2 Reformatted Telemetry (ATL01/L1A)

The ATL01/L1A Reformatted Telemetry product contains all the ICESat-2 science data that was downlinked by the X-band telemetry stream. This stream contains ATLAS data, including LRS and Spacecraft Science data as well as engineering data. The data parameters will be decompressed so each value is stored in a standard HDF data type. The L1A data granules (files) will contain all the telemetry parameters for a fixed time period.

The UTC time and time offsets must be maintained and all associated data from the GPS timing information included in the ATLAS telemetry to allow exact UTC time to be computed by the L1B algorithms for each laser shot.

The primary ATLAS packets (APIDs) are:

SM\_HK Packet (A\_SIM\_HK apid 1026)

Altimeter Science Packet for each Photon Counting Electronics (PCE) card (PCEx\_ALT\_SCI\_TLM\_MID apid 1254, 1264, 1274)

Algorithm Science Packet for each PCE (A\_PCEx\_PMF.ALGORITHM\_SCIENCE apid 1162, 1164, 1166)

1 Pulse Per Second (PPS) Major Frame Time At Tone Packet for each PCE (APID 1139, 1140, 1141)

Atmospheric Histogram Science Packets for each PCE (PCEx\_SAM\_SCI\_TLM\_MID apid 1255, 1265, 1275)

ATLAS housekeeping Packet E (A\_HKT\_E apid 1063)

The primary LRS packets (APIDs) are:

LRS Stellar Centroid Data (A\_LRS\_SCENT apid 1124)

LRS Laser Centroid Data (A\_LRS\_LCENT apid 1123)

#### LRS Housekeeping (A\_LRS\_HK apid 1120)

The primary Spacecraft sub-packets are:

IMU data at 50 HZ (inside spacecraft packet 1 apid 5) Star Tracker Data 10hz (inside spacecraft packet 2 apid 6) GPS data at 1 hz (inside spacecraft packet 3 and 4 apid 7 and 8) ACS data at 1 hz (inside spacecraft packet 1 apid 5) SADA Position data at 1 hz (inside spacecraft packet 1 apid 5)

#### 2.3 References

| ICESat-2-<br>ATSYS-HDBK-<br>3886 | ATLAS Command & Telemetry Handbooks, Version 15, June 1, 2015                                                                                                                  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICESat-2-IT-<br>RPT-4005         | ATLAS Telemetry and Commands rec files & Products for inclusion in the Project Database, Ver 18, September 1, 2017                                                             |
| ICESat-2-LRS-<br>IFACE-1794      | Laser Reference System (LRS) Command and Data Interface Control<br>Document (ICD), Revision B, November 16 2016                                                                |
| DN-ICESat2-<br>SYS-024           | Ancillary Telemetry Packet Description, Rev C, June 22 2015                                                                                                                    |
| ICESat-2-MEB-<br>SPEC-0875       | Main Electronics Box (MEB) Photon Counting Electronics (PCE) Data<br>Flow Controller (DFC) Field Programmable Gate Array (FPGA)<br>Specification, Revision I, February 5 2016. |
| ICESat-2-<br>ATSYS-TN-<br>0910   | ATLAS Spots, Channels and Redundancy Assignments, Revision D,<br>September 22 2015.                                                                                            |
| ICESat-2-<br>SCSYS-CDRL-<br>1258 | [CDRL SE-9A] 1553 Interface Control Document (ICD), Revision G,<br>September 03 2015                                                                                           |

| ICESat-2-SIPS- | ATLAS Science Algorithm Standard Data Product (SDP) – Volume 1 |
|----------------|----------------------------------------------------------------|
| SPEC-4256      | (ATL01)                                                        |

#### 3.0 ATL01 PRODUCT DESCRIPTION

The ATL01 structure is designed to preserve the level 0 APID knowledge. The top-level structure is a group for each downlinked APID. In the non-diagnostic packet the parameters are fully broken down and in cases may have subgroups to aid easy data access to time series data like the received photon events.

#### 3.1 ATL01 Time of Day

The ATLAS HDF Standard Data Products (SDP) contain a number of groups where each group can be at different data rates. To aid the alignment of the data each group will contain a delta time generated by the SIPS processing. This delta time is defined as Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch is 2018-01-01T00:00:00 [TBD]. The value is contained in the ancillary data group as the a;tas\_sdp\_gps\_epoch. The delta time will be consistent across all products as a continuous counting from this epoch. Generally a UTC time can be computed by computing the number of seconds from the first data point (earliest time of data) and adding it to the data\_start\_utc in ancillary\_data.

For the L1A data product each delta\_time is computed by using the CCSDS header time of the packet. Data within a packet that are provided multiple times per packet are either placed in a dimensioned array by the times it reoccurs (e.g. number of laser centroids (6)) or in a time series where the delta\_time is repeated and a counter is added for each event (e.g. for the received photon events).

#### 3.2 ATLAS Telemetry

The ATLAS telemetry is defined in the ATLAS documents in the section 2.3 references. Mainly ATLAS Command & Telemetry Handbooks and Main Electronics Box (MEB) Photon Counting Electronics (PCE) Data Flow Controller (DFC) Field Programmable Gate Array (FPGA) Specification. The latest approved version is found in the ICESat-2 MIS. Some packets are defined in detail and others reference ATLAS documents in MIS for the detailed information. Important science packets are described below. Many other packet types can be downlinked by ground command.

#### 3.2.1 SM-HK data Packet

This packet contains the important time latches to both the GPS/spacecraft 1 PPS and the ATLAS internal 1 PPS. This packet provides the references between the GPS time of the GPS/spacecraft 1 PPS and the ATLAS time (AMET). It also provides the computed GPS time for the ATLAS internal 1 PPS.

#### 3.2.2 PCE Altimetry Science Data Packet

The telemetry for each Altimetry Science Data APID is formed by a specific PCE and contains the data for one track pair (a strong and weak beam) consisting of 2 channels for the transmit pulse, 16 channels of the strong beam and 4 channels of the weak beam for the received photons plus 2 channels for calibration. The strong and weak beam received photons also contain information that reports if it is rising or falling edge detection. The data are grouped in major frames at 50 Hz. The downlink band is reported once per major frame. Each PCE major frame contains two measurements for each of the 200 transmit pulses and a time for each received photon. Details of these are defined in ICESat-2-MEB-SPEC-0875 ATLAS MEB Photon Counting Electronics (PCE) Data Flow Controller (DFC) Field Programmable Gate Array Specification.

On ATL03 there is a set of parameters that are once per major frame in one group. This group has the parameters like the PCE calibration and the 50 shot photon sums over the range window. The transmit pulse and received photon data are each in their own times series group.

#### 3.2.2.1 Transmit Start Time Measurements

Start time measurements from four threshold crossings on the start pulse are carried forward on this product for L1B processing. The data consists of six parameters per shot. Three pairs of measurements (one from each PCE) of the transmit leading edge detection and one each to either the leading upper, trailing upper or trailing lower detection.

#### 3.2.2.2 Received Photon Time Measurements

Measured time of receipt of each photon per channel per shot per PCE are in this product. Each received photon will be given a unique photon ID by the L1A processing that will allow its association across the ICESat-2 standard data products as needed.

#### 3.2.3 PCE Algorithm Science Packet

An Algorithm Science Packet is reported for each PCE that contains the major frame information like the range to the top of the altimeter window and its width. The data is reported at 50 Hz. They are defined in ICESat-2-ATSYS-HDBK-3886 ATLAS Command & Telemetry Handbooks

#### 3.2.4 PCE 1 PPS time at the tone Packet

A 1 PPS Time at the Tone packet (TAT) is reported for each PCE. It contains the major frame information to properly tag each laser pulse with the time of day. The rate is 50 Hz. They are defined in ICESat-2-ATSYS-HDBK-3886 ATLAS Command & Telemetry Handbooks

#### 3.2.5 PCE Atmospheric Histogram Packet

Each Atmospheric Histogram APID contains histograms for a strong or weak beam that spans 14km in 30m resolution bins (-1 to 13km). The range to the top of the histogram is provided. The histograms are provided at 25 Hz. They are defined in ICESat-2-ATSYS-HDBK-3886 ATLAS Command & Telemetry Handbooks

#### 3.3 LRS Telemetry

The LRS is considered part of ATLAS. Its telemetry is defined in detail in ICSat-2-LRS-IFACE-1794 the ATLAS LRS Command and Data ICD (see sections 9 and 10). The latest approved version is found in the ICESat-2 MIS.

The LRS normal mode is the Application Mode and three packet types are normally downlinked (Housekeeping, Laser Centroid Data and Stellar Centroid Data). Ten other packet types can be downlinked by ground command. The LRS Failsafe Mode has 1 packet type that is normally downlinked and 2 packet types that are downlinked by ground command.

All LRS data packets will be placed on the output product in their own groups.

#### 3.4 Spacecraft Telemetry

The spacecraft telemetry is defined in detail in the Ancillary Telemetry Packet Description - DN-ICESat2-SYS-024. The latest approved version is found on the Orbit\_ATK sharepoint.

The ancillary telemetry (Spacecraft data) is provided in four packet types at 1 Hz each. Each packet contains data from several subsystems and their own packet within the packet. Figure 3-1 displays a top-level summary of the data (including correlation accuracies to GPS Time). The ATL01 has each subsystem data in its own data group.

# ICESat-2-SIPS-SPEC-1601

#### **Revision - Draft**

| <ul> <li>IMU data @ 50Hz</li> <li>Sync Pulse timestamp (in SC clock time format)</li> <li>IMU sync event and data timestamps</li> <li>Mode/validity status and Integrated Angle Counters</li> <li>GPS data @ 1Hz</li> <li>Time Correlation Data Record (GPST, UTC, GPSR Oscillator Time)</li> </ul>                                   |                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Channel Status Data Record</li> <li>Noise Histogram Data Record</li> <li>Housekeeping Parameter Report</li> <li>Navigation Solution Data Record</li> <li>Carrier Amplitude Data Record</li> <li>Carrier and Code Phase Data Records</li> </ul>                                                                               | SADA Position Telemetry @ 1Hz     Measured Az/El from potentiometer     Estimated Az/El position from ACS SW     (based on commanded counts)                                                                                                                                                                                                   |
| <ul> <li>Contains carrier cycle counter and delta range</li> <li>Contains GPS chip count</li> <li>ACS SW-filtered Inertial-to-LRS frame quaternions, SC body rates and position/velocity data @ 1Hz</li> <li>Including calculation time tags</li> <li>Same data that is provided to ATLAS in RT</li> <li>ACS SW Mode @ 1Hz</li> </ul> | <ul> <li>SC &amp; ATLAS temperatures @ 1Hz</li> <li>Solar Array temps, SC-to-ATLAS I/F flexure temps, SC-monitored ATLAS temps</li> <li>SC &amp; ATLAS voltage/currents @ 1Hz</li> <li>SC bus voltage and SC PDU-measured ATLAS currents</li> <li>OBS Configuration Telemetry @ 1Hz</li> <li>SC PDU switch status of ATLAS services</li> </ul> |

#### Figure 3-1 Top-level Summary of the Spacecraft Data

#### 3.5 Other inputs

- A GPS leap second table that allows the conversion of GPS time to a Julian data time.
- The ATL01 Granule start and stop times based on predicted orbits

#### 4.0 ALGORITHM THEORY

The Level 1A product is a reformatted version of the level 0 data, therefore no science algorithms are required to process the data. The processing is solely to decompress and timealign data from the APIDs, then place the data for a defined time period into a single ATL01 HDF product containing all parameters for higher level processing.

#### 4.1 ATLAS Telemetry

The ATLAS telemetry consists of the ATLAS instrument and the LRS instrument data.

#### 4.1.1 ATLAS Instrument

The exact decoding of each ATLAS data packets and parameters are defined in ICESat-2-ATSYS-HDBK-3886, ICESat-2-MEB-SPEC-0875 (section 5.12 and 5.13) and ICESat-2-IT-RPT-4005

The science and instrument monitoring required packets received in the ATL00 will be unpacked as specified in the ATLAS reference documents. The flight software diagnostic packets will be maintained in near downlink format for easy use by the instrument team. Most packet types will be placed in their own group that maintains parameter names that are close to its ATL00 mnemonic as an unpacked parameter on the ATL01. There are some parameters like the received photon times that will be in a group that allows them to be simple single dimension parameters. The time for each packet is decoded from the CCSDS header Shdays and Shmsec. These are Days since epoch where epoch is defined by the ICESat-2 Mission as 6-Jan-1980 00:00:00

#### 4.1.2 LRS Instrument

The exact decoding of each LRS data packet and its parameters are defined in ICESat-2-LRS\_IFACE\_1974 sections 9 and 10.

#### 4.1.3 LRS Application Mode

Housekeeping, Laser Centroid Data, and Stellar Centroid Data are the packets normally downlinked to the ground when the LRS is in Application Mode. SSR Memory Dump, Real Time Memory Dump, TAMS Window Data, Laser Window Data, Stellar Window Data, Laser Image Data, Stellar Image Data, and Timing Data and Configuration Data are only downlinked by ground command.

Most LRS packets received in the ATL00 will be unpacked as specified in the LRS ICD. Some packets will be maintained in near downlink format for easy use by the instrument team. Each packet type will be its own group that maintains close parameter name to its ATL00 mnemonic

as an unpacked parameter on the ATL01. The time for the packet is decoded from the Shdays and Shmsec in the CCSDS header. These are Days since epoch where epoch is defined by the ICESat-2 Mission as 6-Jan-1980 00:00:00.

#### 4.1.3.1 LRS Failsafe Mode

Housekeeping is the only packet normally downlinked to the ground when the LRS is in Failsafe Mode. SSR Memory Dump and Real Time Memory Dump are only downlinked by ground command. The housekeeping packet received in the ATL00 will be unpacked as specified in the LRS ICD.

#### 4.2 Spacecraft

The exact decoding of each Ancillary Science data packets and their parameters are defined in DN-ICESat-2-SYS-024.

Within the Spacecraft Ancillary Science Data packets there are a number of internal sub packets that contain the different component's data. The data in these ATL00 packets will be unpacked as specified in the Ancillary Telemetry Packet Description Design Note. Each component's data will be its own group that has unpacked parameters on the ATL01 for each ATL00 parameter. The time for the packet is decoded from the Shdays and Shmsec. These are Days since epoch where epoch is defined by the ICESat-2 Mission as 6-Jan-1980 00:00:00.

#### 5.0 ALGORITHM IMPLEMENTATION

This section describes the specific implementation of the algorithm for program development.

#### 5.1 Outline of Procedure

The APID files will be read for all data within a specific processing time for an output file. All data within the time span will be placed on one ATL01 output file having defined groups of parameters. A delta time for each group or parameter will be created from the time field in the CCSDS header. Most packets contain a checksum that the ATL01 processing will verify. Each input parameter will be extracted for its telemetry packed field and placed in a byte structure that contains only that parameter. Some parameters will concatenate bits from multiple bytes to form a single output parameter. A count of packets processed in the time span will be computed that can be used with the expected number of packets as part of the product quality assurance. (Table 5-1)

#### 5.1.1 Input Variables

#### 5.1.2 Parameters Required from ICESat-2 Telemetry

The ATLAS packets are described in table 5-1. Most parameters for output will be derived directly from data that will come from ICESat-2 telemetry. The ATL01 parameters are provided in its Data Dictionary available separately. (ICESat-2-SIPS-SPEC-4256)

#### ATLAS instrument

The ATLAS APIDs listed in tables above are all input to the Level 1A processing algorithm. The breakdown of the packets is described in the referenced ICESat-2 MIS documents and will not be repeated within this ATBD.

| Decimal | Hex   | Label        | Rate |
|---------|-------|--------------|------|
| 1026    | 0x402 | A_SIM_HK     | 1    |
| 1032    | 0x408 | A_SLA_HK     | 1    |
| 1033    | 0x409 | A_SXP_HK     | 1    |
| 1057    | 0x421 | A_MCE_POS    | 200  |
| 1059    | 0x423 | A_HKT_A      | 1    |
| 1060    | 0x424 | A_HKT_B      | 1    |
| 1061    | 0x425 | A_HKT_C      | 1    |
| 1062    | 0x426 | A_HKT_D      | 1    |
| 1063    | 0x427 | A_HKT_E      | 1    |
| 1065    | 0x429 | A_HKT_STATUS | 1    |

Table 5-1 ATAS Altimeter packets that are decommutated

| 4070 | 0.420 |                                 | -0 |
|------|-------|---------------------------------|----|
| 1072 | 0x430 | A_DFC1_HK                       | 50 |
| 1085 | 0x43D | A_PCE1_PMF_SCIENCE_MODE_HK      | 1  |
| 1088 | 0x440 | A_DFC2_HK                       | 50 |
| 1101 |       | A_PCE2_PMF_SCIENCE_MODE_HK      | 1  |
| 1104 | 0x450 | A_DFC3_HK                       | 50 |
| 1117 | 0x45D | A_PCE3_PMF_SCIENCE_MODE_HK      | 1  |
| 1136 | 0x470 | A_SC_TAT                        | 1  |
| 1137 | 0x471 | A_SC_POS                        | 1  |
| 1138 | 0x472 | A_SC_PON                        | 1  |
| 1139 | 0x473 | PCE1_PMF_TIMEKEEPING            | 0  |
| 1140 | 0x474 | PCE2_PMF_TIMEKEEPING            | 0  |
| 1141 | 0x475 | PCE3_PMF_TIMEKEEPING            | 0  |
| 1152 | 0x480 | SXP_SSR_PCE1_XP_DATA_STRONG_MID | 0  |
| 1153 | 0x481 | SXP_SSR_PCE1_XP_DATA_WEAK_MID   | 0  |
| 1154 | 0x482 | SXP_SSR_PCE2_XP_DATA_STRONG_MID | 0  |
| 1155 | 0x483 | SXP_SSR_PCE2_XP_DATA_WEAK_MID   | 0  |
| 1156 | 0x484 | SXP_SSR_PCE3_XP_DATA_STRONG_MID | 0  |
| 1157 | 0x485 | SXP_SSR_PCE3_XP_DATA_WEAK_MID   | 0  |
| 1161 | 0x489 | A_PCE1_PMF_ALGORITHM_DIAGNOSTIC | 1  |
| 1162 | 0x48A | PCE1_ALG_SCI_TLM_MID            | 0  |
| 1163 | 0x48B | A_PCE2_PMF_ALGORITHM_DIAGNOSTIC | 1  |
| 1164 | 0x48C | PCE2_ALG_SCI_TLM_MID            | 0  |
| 1165 | 0x48D | A_PCE3_PMF_ALGORITHM_DIAGNOSTIC | 1  |
| 1166 | 0x48E | PCE3_ALG_SCI_TLM_MID            | 0  |
| 1250 | 0x4E2 | PCE1_SAL_DIAG_HIST_TLM_MID      | 0  |
| 1251 | 0x4E3 | PCE1 WAL DIAG HIST TLM MID      | 0  |
| 1252 | 0x4E4 | PCE1_SAM_DIAG_HIST_TLM_MID      | 50 |
| 1253 | 0x4E5 | PCE1 WAM DIAG HIST TLM MID      | 50 |
| 1254 | 0x4E6 | PCE1_ALT_SCI_TLM_MID            | 50 |
| 1255 | 0x4E7 | PCE1_SAM_SCI_TLM_MID            | 25 |
| 1256 | 0x4E8 | PCE1 PHS HDW DIAG TLM MID       | 0  |
| 1259 | 0x4EB | PCE1 WAM SCI TLM MID            | 25 |
| 1260 | 0x4EC | PCE2 SAL DIAG HIST TLM MID      | 0  |
| 1261 | 0x4ED | PCE2 WAL DIAG HIST TLM MID      | 0  |
| 1262 | 0x4EE | PCE2 SAM DIAG HIST TLM MID      | 50 |
| 1263 | 0x4EF | PCE2 WAM DIAG HIST TLM MID      | 50 |
| 1264 | 0x4F0 | PCE2 ALT SCI TLM MID            | 50 |
| 1265 | 0x4F1 | PCE2 SAM SCI TLM MID            | 25 |
| 1269 | 0x4F5 | PCE2 WAM SCI TLM MID            | 25 |
| 1205 | 57-15 |                                 | 25 |

| 1270 | 0x4F6 | PCE3_SAL_DIAG_HIST_TLM_MID | 0  |
|------|-------|----------------------------|----|
| 1271 | 0x4F7 | PCE3_WAL_DIAG_HIST_TLM_MID | 0  |
| 1272 | 0x4F8 | PCE3_SAM_DIAG_HIST_TLM_MID | 50 |
| 1273 | 0x4F9 | PCE3_WAM_DIAG_HIST_TLM_MID | 50 |
| 1274 | 0x4FA | PCE3_ALT_SCI_TLM_MID       | 50 |
| 1275 | 0x4FB | PCE3_SAM_SCI_TLM_MID       | 25 |
| 1279 | 0x4FF | PCE3_WAM_SCI_TLM_MID       | 25 |

Table 5-1 ATAS Altimeter packets that are left in telemetry byte order

|         |       | 1 5 5                   |      |   |
|---------|-------|-------------------------|------|---|
| Decimal | Hex   | Label                   | Rate |   |
| 1025    | 0x401 | A_SRT_HK                |      | 1 |
| 1027    | 0x403 | A_SBC_FM_HK             |      | 1 |
| 1028    | 0x404 | A_SBC_HS_HK             |      | 1 |
| 1029    | 0x405 | A_SDI_HK                |      | 1 |
| 1030    | 0x406 | A_SBS_HK                |      | 1 |
| 1031    | 0x407 | A_STH_HK                |      | 1 |
| 1034    | 0x40A | A_SMT_HK                |      | 1 |
| 1035    | 0x40B | A_SRT_SA                |      | 1 |
| 1036    | 0x40C | A_SIM_SPW_STAT          |      | 1 |
| 1037    | 0x40D | A_SBC_FM_PDU            |      | 0 |
| 1038    | 0x40E | A_SBC_FM_STAT           |      | 0 |
| 1039    | 0x40F | A_SBC_FM_LIST           |      | 0 |
| 1040    | 0x410 | A_SBC_FM_EEFS_STAT      |      | 0 |
| 1041    | 0x411 | A_SBC_HS_HDW_DIAG       |      | 0 |
| 1042    | 0x412 | A_SBC_HS_RT_STATS       |      | 0 |
| 1043    | 0x413 | A_SBC_HS_DT             |      | 0 |
| 1044    | 0x414 | A_SBC_HS_DIAG_LOG       |      | 0 |
| 1045    | 0x415 | A_SBC_HS_TASKS_DIAG     |      | 0 |
| 1046    | 0x416 | A_SBC_HS_RT_FILTER      |      | 0 |
| 1047    | 0x417 | SDI_1553_DIAG_TLM_MID   |      | 1 |
| 1048    | 0x418 | A_SBS_AMCS_MCE_POS_CMDS |      | 1 |
| 1049    | 0x419 | A_SBS_AMCS_DIAG         |      | 1 |
| 1050    | 0x41A | A_STH_BB                |      | 1 |
| 1051    | 0x41B | A_STH_PWM               |      | 1 |
| 1052    | 0x41C | A_SLA_DIAG              |      | 1 |
| 1053    | 0x41D | A_SLA_LSR_ASYNC_RESP    |      | 0 |
| 1054    | 0x41E | A_SMT_DIAG              |      | 1 |
| 1055    | 0x41F | A_ASC_RMAP              |      | 1 |
|         |       |                         |      |   |

| 1056 | 0x420 | A_MCE_HK                  | 1    |
|------|-------|---------------------------|------|
| 1058 | 0x422 | A_MCE_RMAP                | 1    |
| 1064 | 0x428 | A_HKT_RMAP                | 1    |
| 1066 | 0x42A | HKT_OFA_TRANS_TLM_MID     | 0    |
| 1067 | 0x42B | A_SIM_PCE1                | 0.30 |
| 1068 | 0x42C | A_SIM_PCE2                | 0.30 |
| 1069 | 0x42D | A_SIM_PCE3                | 0.30 |
| 1070 | 0x42E | A_SBC_FW_CMD_ECHO         | 0    |
| 1071 | 0x42F | SDI_SPW_DIAG_TLM_MID      | 1    |
| 1073 | 0x431 | A_PCE1_PMF_HK             | 1    |
| 1074 | 0x432 | PCE1_PMG_HK_TLM_MID       | 1    |
| 1075 | 0x433 | A_PCE1_PSW_HK             | 1    |
| 1076 | 0x434 | A_PCE1_FM_HK              | 1    |
| 1077 | 0x435 | A_PCE1_FM_PDU             | 1    |
| 1078 | 0x436 | A_PCE1_FM_STAT            | 1    |
| 1079 | 0x437 | A_PCE1_FM_LIST            | 1    |
| 1080 | 0x438 | A_PCE1_FM_EEFS_STAT       | 1    |
| 1081 | 0x439 | A_PCE1_HS_HK              | 1    |
| 1082 | 0x43A | A_PCE1_HS_DT              | 1    |
| 1083 | 0x43B | A_PCE1_HS_DIAG_LOG        | 1    |
| 1084 | 0x43C | A_PCE1_HS_RT_FILTER       | 1    |
| 1086 | 0x43E | A_PCE1_PMF_MANUAL_MODE_HK | 1    |
| 1089 | 0x441 | A_PCE2_PMF_HK             | 1    |
| 1090 | 0x442 | PCE2_PMG_HK_TLM_MID       | 1    |
| 1091 | 0x443 | A_PCE2_PSW_HK             | 1    |
| 1092 | 0x444 | A_PCE2_FM_HK              | 1    |
| 1093 | 0x445 | A_PCE2_FM_PDU             | 1    |
| 1094 | 0x446 | A_PCE2_FM_STAT            | 1    |
| 1095 | 0x447 | A_PCE2_FM_LIST            | 1    |
| 1096 | 0x448 | A_PCE2_FM_EEFS_STAT       | 1    |
| 1097 | 0x449 | A_PCE2_HS_HK              | 1    |
| 1098 | 0x44A | A_PCE2_HS_DT              | 1    |
| 1099 | 0x44B | A_PCE2_HS_DIAG_LOG        | 1    |
| 1100 | 0x44C | A_PCE2_HS_RT_FILTER       | 1    |
| 1102 | 0x44E | A_PCE2_PMF_MANUAL_MODE_HK | 1    |
| 1105 | 0x451 | A_PCE3_PMF_HK             | 1    |
| 1106 | 0x452 | PCE3_PMG_HK_TLM_MID       | 1    |
| 1107 | 0x453 | A_PCE3_PSW_HK             | 1    |
| 1108 | 0x454 | A_PCE3_FM_HK              | 1    |
|      |       |                           |      |

| 1109 | 0x455 | A_PCE3_FM_PDU               | 1 |
|------|-------|-----------------------------|---|
| 1110 | 0x456 | A_PCE3_FM_STAT              | 1 |
| 1111 | 0x457 | A_PCE3_FM_LIST              | 1 |
| 1112 | 0x458 | A_PCE3_FM_EEFS_STAT         | 1 |
| 1113 | 0x459 | A_PCE3_HS_HK                | 1 |
| 1114 | 0x45A | A_PCE3_HS_DT                | 1 |
| 1115 | 0x45B | A_PCE3_HS_DIAG_LOG          | 1 |
| 1116 | 0x45C | A_PCE3_HS_RT_FILTER         | 1 |
| 1118 | 0x45E | A_PCE3_PMF_MANUAL_MODE_HK   | 1 |
| 1142 | 0x476 | SXP_PCE1_XP_DATA_STRONG_MID | 2 |
| 1143 | 0x477 | SXP_PCE1_XP_DATA_WEAK_MID   | 2 |
| 1144 | 0x478 | SXP_PCE2_XP_DATA_STRONG_MID | 2 |
| 1145 | 0x479 | SXP_PCE2_XP_DATA_WEAK_MID   | 2 |
| 1146 | 0x47A | SXP_PCE3_XP_DATA_STRONG_MID | 2 |
| 1147 | 0x47B | SXP_PCE3_XP_DATA_WEAK_MID   | 2 |
| 1148 | 0x47C | PCE1_TAT_TLM_MID            | 0 |
| 1149 | 0x47D | PCE2_TAT_TLM_MID            | 0 |
| 1150 | 0x47E | PCE3_TAT_TLM_MID            | 0 |
| 1257 | 0x4E9 | PCE1_PHS_RT_STATS_TLM_MID   | 0 |
| 1258 | 0x4EA | PCE1_PHS_TASKS_DIAG_TLM_MID | 0 |
| 1266 | 0x4F2 | PCE2_PHS_HDW_DIAG_TLM_MID   | 0 |
| 1267 | 0x4F3 | PCE2_PHS_RT_STATS_TLM_MID   | 0 |
| 1268 | 0x4F4 | PCE2_PHS_TASKS_DIAG_TLM_MID | 0 |
| 1276 | 0x4FC | PCE3_PHS_HDW_DIAG_TLM_MID   | 0 |
| 1277 | 0x4FD | PCE3_PHS_RT_STATS_TLM_MID   | 0 |
| 1278 | 0x4FE | PCE3_PHS_TASKS_DIAG_TLM_MID | 0 |
|      |       |                             |   |

#### LRS instrument

The LRS APIDs listed in table above are all input to the Level 1A processing algorithm. The breakdown of the packets is described in in ICESat-2-LRS\_IFACE\_1974 sections 9 and 10.

Table 5-3 ATAS LRS packets that are decommutated

| Decimal | Hex   | Label      | Rate |   |
|---------|-------|------------|------|---|
| 1120    | 0x460 | LRStmHK    |      | 1 |
| 1121    | 0x461 | LRStmSSRDP |      | 1 |
| 1122    | 0x462 | LRStmRTDP  |      | 1 |

| 1123 | 0x463 | LRStmLCENT   | 50 |
|------|-------|--------------|----|
| 1124 | 0x464 | LRStmSCENT   | 10 |
| 1125 | 0x465 | LRStmTWIN    | 1  |
| 1126 | 0x466 | LRStmLWIN    | 1  |
| 1127 | 0x467 | LRStmSWIN    | 1  |
| 1128 | 0x468 | LRStmLIMG    | 1  |
| 1129 | 0x469 | LRStmSIMG    | 1  |
| 1130 | 0x46A | LRStmTIMING  | 1  |
| 1131 | 0x46B | LRStmCONFIG  | 1  |
| 1133 | 0x46D | LRSfstmHK    | 0  |
| 1134 | 0x46E | LRSfstmSSRDP | 0  |
| 1135 | 0x46F | LRSfstmRTDP  | 0  |
|      |       |              |    |

#### **Spacecraft Ancillary Science Data**

The spacecraft packets are nominally once per second. There are four different packets. Their APIDs are 5, 6, 7 and 8. The breakdown of the components within the packet (sub packets) are shown in Table 5-2. The breakdown of the packet is described in the DN-ICESat2-SYS-024 rev B Ancillary Telemetry Packet Description and are not be repeated within this ATBD.

Table 5-5 ICESat-2 spacecraft packets that are decommutated

| Hex   | Label                                                                                                             | Rate                                                                                                                                                                                                                                                                                                                                                              |
|-------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x005 | SC1                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x006 | SC2                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x007 | SC3                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x008 | SC4                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x304 | GPSR1_HK                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x306 | GPSR1_SCI_POD                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x309 | GPSR1_MEM                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x30B | GPSR1_SCI_S1                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x30C | GPSR1_SCI_SP                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x30D | GPSR1_SCI_EVENT                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x314 | GPSR2_HK                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x316 | GPSR2_SCI_POD                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x319 | GPSR2_MEM                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                 |
| 0x31B | GPSR2_SCI_S1                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                 |
|       | 0x005<br>0x006<br>0x007<br>0x008<br>0x304<br>0x306<br>0x309<br>0x308<br>0x300<br>0x30D<br>0x314<br>0x316<br>0x319 | 0x005         SC1           0x006         SC2           0x007         SC3           0x008         SC4           0x304         GPSR1_HK           0x306         GPSR1_SCI_POD           0x309         GPSR1_SCI_S1           0x300         GPSR1_SCI_SP           0x300         GPSR1_SCI_EVENT           0x314         GPSR2_HK           0x319         GPSR2_MEM |

| 796 | 0x31C | GPSR2_SCI_SP    | 1 |
|-----|-------|-----------------|---|
| 797 | 0x31D | GPSR2_SCI_EVENT | 1 |

| Space Packet 1 Size           |      |       |           |
|-------------------------------|------|-------|-----------|
| Data Source                   | Bits | Bytes |           |
| ACS Software                  | 880  | 110   |           |
| GPS Receiver                  | 0    | 0     |           |
| Star Trackers                 | 0    | 0     |           |
| Inertial Measurement Unit     | 5600 | 700   |           |
| Integrated Electronics Module | 1824 | 228   |           |
| Power Distribution Unit       | 288  | 36    |           |
| Space Packet Data Field TOTAL | 8592 | 1074  | # Packets |
| Space Packet Headers          | 48   | 6     |           |
| Space Packets TOTAL           | 8640 | 1080  | 1         |
| M_PDU Fill to Complete Packet | 112  | 14    | -         |
| ASM and M_PDU Overhead        | 48   | 6     | -         |
| Full Packets to SSR TOTAL     | 8800 | 1100  | 1         |

 Table 5-1 Ancillary Packet Size (Spacecraft Packet 1)

| Space Packet 2 Size           |      |       |           |  |
|-------------------------------|------|-------|-----------|--|
| Data Source                   | Bits | Bytes |           |  |
| ACS Software                  | 0    | 0     |           |  |
| GPS Receiver                  | 0    | 0     |           |  |
| Star Trackers                 | 8320 | 1040  |           |  |
| Inertial Measurement Unit     | 0    | 0     |           |  |
| Integrated Electronics Module | 192  | 24    |           |  |
| Power Distribution Unit       | 0    | 0     |           |  |
| Space Packet Data Field TOTAL | 8512 | 1064  | # Packets |  |
| Space Packet Headers          | 48   | 6     |           |  |
| Space Packets TOTAL           | 8560 | 1070  | 1         |  |
| M_PDU Fill to Complete Packet | 192  | 24    | -         |  |
| ASM and M_PDU Overhead        | 48   | 6     | -         |  |
| Full Packets to SSR TOTAL     | 8800 | 1100  | 1         |  |

#### Table 5-2 Ancillary Packet Size (Spacecraft Packet 2)

| Space Packet 3 Size           |      |       |           |  |
|-------------------------------|------|-------|-----------|--|
| Data Source                   | Bits | Bytes |           |  |
| ACS Software                  | 0    | 0     |           |  |
| GPS Receiver                  | 8320 | 1040  |           |  |
| Star Trackers                 | 0    | 0     |           |  |
| Inertial Measurement Unit     | 0    | 0     |           |  |
| Integrated Electronics Module | 192  | 24    |           |  |
| Power Distribution Unit       | 0    | 0     |           |  |
| Space Packet Data Field TOTAL | 8512 | 1064  | # Packets |  |
| Space Packet Headers          | 48   | 6     |           |  |
| Space Packets TOTAL           | 8560 | 1070  | 1         |  |
| M_PDU Fill to Complete Packet | 192  | 24    | -         |  |
| ASM and M_PDU Overhead        | 48   | 6     | -         |  |
| Full Packets to SSR TOTAL     | 8800 | 1100  | 1         |  |

#### Table 5-3 Ancillary Packet Size (Spacecraft Packet 3)

| Space Packet 4 Size           |      |       |           |  |
|-------------------------------|------|-------|-----------|--|
| Data Source                   | Bits | Bytes |           |  |
| ACS Software                  | 0    | 0     |           |  |
| GPS Receiver                  | 3522 | 444   |           |  |
| Star Trackers                 | 0    | 0     |           |  |
| Inertial Measurement Unit     | 0    | 0     |           |  |
| Integrated Electronics Module | 192  | 24    |           |  |
| Power Distribution Unit       | 0    | 0     |           |  |
| Space Packet Data Field TOTAL | 3744 | 468   | # Packets |  |
| Space Packet Headers          | 48   | 6     |           |  |
| Space Packets TOTAL           | 3792 | 474   | 1         |  |
| M_PDU Fill to Complete Packet | 4960 | 620   | -         |  |
| ASM and M_PDU Overhead        | 48   | 6     | -         |  |
| Full Packets to SSR TOTAL     | 8800 | 1100  | 1         |  |

#### Table 5-4 Ancillary Packet Size (Spacecraft Packet 4)

#### 5.1.2.1 Parameters Required from Ancillary Sources

The GPS to UTC time leap second table is needed as an input.

#### 5.1.2.2 Output Parameters

There are too many L1A output parameters to list within this document. A separate L1A data dictionary will be supplied. Most groups contain a delta\_time that is computed based on the packet generation time in the CCSDS header as the Elapsed seconds since first data point in the granule.

#### 5.1.3 Processing Procedures

#### 5.1.3.1 L1A Geolocation processing

In order to have geolocation data with the L1A the group below will be on the L1A once per second.

/ATLAS/geolocation

The below will be provided as inputs by the processing

orbit\_number rgt – reference ground track cycle

The below will be determined from the spacecraft GPSR telemetry in the SC4 (APID 8) packet

latitude - Navigation solution Latitude. This is provided once per second.

longitude – Navigation solution Longitude. This is provided once per second. A standard transform will be used work to move from s/c to each ATLAS beam pair.

h\_ell- Navigation solution height above the reference ellipsoid (WGS84)

#### 5.1.3.2 ATLAS Instrument processing

#### 5.1.3.2.1 L1A processing algorithms

When the same packet format is used for several APIDs that produce unique output groups this ATBD defines a generic one such as PCEx for PCE1, PCE2 and PCE3.

There are a number of ATLAS flight software packets. Many of these do not need to be commutated and many will never be seen on the ground. A large of number of these are just put on the L1A product with a byte by byte copy of the packet data section. The CCSDS header is in their own group. There are APIDs assigned to ATLAS that are not defined or believed to be only transferred within the MEB (main electronics box). There is no requirement to address the undefined and internal ATLAS packets for L1A.

The Altimeter Science Packet processing needs to handle truncation tag (meaning all the Tx and RX were not downlinked). This is indicated in the altimeter science packets by the channel

number being 0x1c = channel 28. The L1A processing also must keep the received and transmit time tag components in such a way they can be properly aligned for ATL02 progressing.

#### A. Time of day

ATLAS telemetry will report a number of time of day offsets relative to events. The details for computation of exact ATLAS time stamps are in the L1B ATBD. The decommutation of the ATLAS ATL00 packets to the ATL01 groups is defined in the references. Time of day for L1A computation is based on the CCSDS header times (see section 3.1).

The L1A processing does not provide a time of day for each transmit pulse or received photon. The downlink telemetry has the data that allows the L1B processing to compute per transmit pulse time of day. In the group that contains the received photon events the delta time changes only once per 200 laser pulses. A counter increments for each laser pulse and another counter increments for each received photon (see Photon ID Algorithm below). There are transmit laser pulse that will have no received photons. An indicator will identify transmit pulses that do not have received photons. For those laser pulses the received event parameters are set to 0.

The structure of the photon events is to keep the transmit and receive event time tags together in an easy form to be used in the L1B processing. Therefore they are kept in a single group. This means that when there are multiple receive events (photons) for the same transmit in one PCE (track pair) the transmit data are repeated. Users should make use of the laser pulse counter to select the first occurrence. Likewise if a PCE (track pair) has no received events (photons) for a transmit then the received event data values are set to zero and the photon counter has the value zero.

#### B. Photon ID

#### The Photon ID Algorithm is:

- Major Frame counter (in telemetry and said to count for 10 years)
- Laser\_Pl\_counter (there are 200 per major frame) this counts each transmit time tag and resets on major frame
- Channel\_num Channel numbers are 1 to 120. There are 20 on each PCE. For each there is a detection on the rise edge of a signal and on the fall edge of a signal to allow a detection in each channel about every 3 nanoseconds. We need to allow for a different calibration for the rise and fall photon detection for each channel. PCE1 are channel\_num 1 to 40, where 1 to 20 are the rise and 21 to 40 are the fall. PCE1 are channel\_num 41 to 80, where 41 to 60 are the rise and 61 to 80 are the fall. PCE1 are channel\_num 81 to 120, where 81 to 100 are the rise and 101 to 120 are the fall.
- Ph\_counter The photon\_counter is a counter for each channel from 1 to N, with a reset to 1 for each laser pulse. (about 3 photons per GT per transmit).

Note : Never split a major frame data set across an ATL01.

In addition:

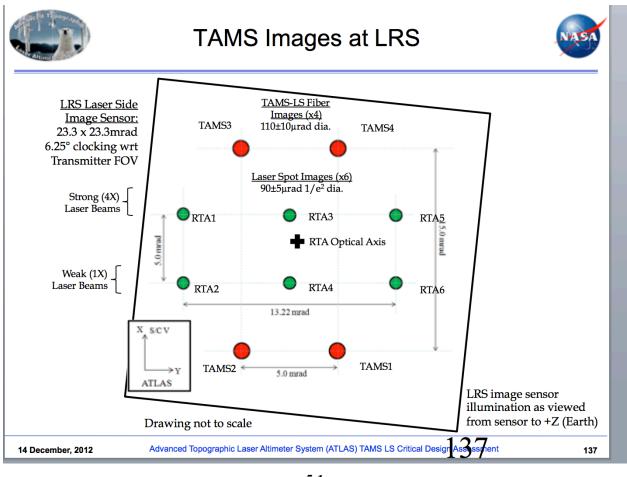
- A photonid needs to be related to the Atmosphere profile by using the count value of the first altimeter Transmit pulse within the profile time span (400 shots).
- A photonid needs to be related to the atlas background data (bgr). Use the same concept as for atmosphere. The value of the first altimeter Transmit pulse within the bgr time span (50 shots).

#### 5.1.3.2.2 L1A user guide notes

- A. Atmosphere Science histograms- ATLAS forms the histograms at every 200 shots then sums two histograms to produce the 400 shot downlinked histogram. Within ATLAS before downlink the histograms are shifted to account for differences in the range window starts between the two histograms. The flight software algorithm is:
  - a. The flight software adds the histograms from two consecutive Major Frames to generate a 400 shot histogram. The calculation is done every 200 shots, for both the strong and the weak spots. Both the strong and weak spot histograms are used by the flight software to determine the presence of thick cloud.
  - b. A 400 shot histogram is calculated at every major frame for both the weak and strong beam using the current 200 shot histogram and the previous one. These are used by the flight software presence of thick cloud detection algorithm. However only every other 400 shot atmospheric histogram from the strong spot is normally downlinked. So the packet sequence count will increment by 2 for each packet as well as the major frame count.
  - c. If the start of the atmospheric histogram (Mrw) changes from one major frame (200 shots) to the next, one of the 200 shot histograms is shifted before it can be added to the other. Changes to the histogram start are always done in 200 ns (~30 m) increments so that the histogram bins can always be aligned. The atmospheric histogram with bins closest to the surface are retained, while the bins highest in the atmosphere, that do not overlap between histograms, should be discarded.
  - d. The histogram with the smaller range window start is shifted before adding. This means after adding there will be bins at the start and end of the histogram that do not overlap and will contain the original 200 shot values. The flight software discards the bins at the start of the histogram that do not overlap and will NOT discard the bins at the end of the histogram that do not overlap. Since the non overlapping bins at the start of the histogram are discarded the total length of the histogram (including the non overlapping bins at the end) will not change, so

there will still be 467 bins. To determine how many bins at the end of the histogram do not overlap and contain the original 200 shot values take the shift amount (in clock cycles) and divide it by 20 (20 clock cycles per bin) to get the number of bins.

B. In order to compute the received event photon time (distance) it is required to know the downlink band associated with the received photon. To know which beam the downlink band 1 ,2 ,3 or 4 relate to we use channel mask. The channel mask Bits 0-15 refer to strong channels 1-16, Bits 16-19 refer to weak channels 1-4. Value 0 means the channel is used and value 1 means it is not used. In normal operation for strong bands the weak channels will be disabled (i.e. 0x0FFFF). However if a channel becomes bad for either weak or strong it may be masked so some of the 0's may take on a value. The check has to be made on the mask, meaning the downlink band is weak if any of the bits 16 to 19 are zero and the downlink band is strong is any of the bits 16-19 are zero. This allows the test data that has only one band to be used for both weak and strong.


#### 5.1.3.3 LRS Instrument processing

LRS telemetry will be reported on fixed offsets from the internal Operating Cycle, and at a frequency that is a sub-multiple of the Operating Cycle. The details of the LRS time stamps are in the LRS ICD. The decommutation of the ATL00 packets to the ATL01 groups is defined in the LRS ICD sections 8, 9 and 10.

All LRS packets have a checksum that needs to be verified in the processing of each packet. The 16-bit summation of all packet words, including the checksum should always result in 0 (x0000). A flag, checksumflg, is set based on if the summation is 0 or not.

A. The LRS SCENT is a variable length packet based on the number of stars detected. For L1A the SCENT data group always contains 30 stars (the maximum). N\_stars is computed value in the SCENT data group that is the actual number of stars for which data was downlinked. N-Stars = (packet length - x)/y where X is the starting byte for the star centroid data (centmagtime) nominally 26 and Y is the number of bytes per star nominally 8.

B. Within the LRS LCENT data packet there is no guarantee of any one-to-one mapping between the order in the array and the physical location in the beam pattern (see figure 5-1). All the LRS guarantees is that any TAMS centroids will appear in the first 4 indices, and any Transmit centroids will appear in the last 6 indices, assuming that the laser-side optical inputs meet the ICD in terms of brightness, divergence, wavelength, etc. Then, the order of the flag bits in the "TrackStat" field and the "Quality" field matches the order of the centroids reported in the array. So any determination of which centroid is RTA1, which centroid is RTA2, and so forth, would have to be performed by the various users of the data.





#### 5.1.3.4 Spacecraft Data processing

The details of the Ancillary Data Timestamps are included in the Ancillary Telemetry Packet Description DN-ICESat2-SYS-024. The decommutation of the APID 5, 6, 7 and 8 to the ATL01 groups is defined in the Ancillary Telemetry Packet Description Design note Appendix A

The GPSR data has a Packet Error Control (PEC) in a number of the sub packets. This is a checksum that is computed by the method defined in appendix D of DN-ICESat2-SYS-024. A checksum is to be determined and compared with the PECs. Based on this method a checksum flag (checksumflg) is set for data that fails the checksum.

(Note checksumflg parameters needs to be added to these s/c groups on ATL01.)

#### 5.2 Variance or Uncertainty of Estimates

Not applicable

#### 5.3 Numerical Computation Considerations

The precision of all data in downlink telemetry must be maintained.

#### 5.3.1 Programmer/Procedural Considerations

TBD Code will be run in a production environment there all error condition will be trapped and reported as processing failures with normal execution termination.

#### 5.3.2 Calibration and Validation

Calibrations are not applied in L1A processing. Validation will be done by comparisons with ATLAS performance analysis software as applicable.

#### 5.3.3 Quality Control and Diagnostics

See section 6

#### 6.0 DATA QUALITY AND BROWSE

#### 6.1 Data Quality

All values below for quality checks are suggested default values that will need to be adjusted once operations are established.

#### 6.1.1 Packet checksum

#### 6.1.1.1 Processing

For all packets that contain a checksum the ground processing will compute the checksum and set a flag indicating the packet passed or failed its validation. For each packet type the sum of the passed and failed checksums will be reported.

#### 6.1.1.2 Quality Criteria

Fail – if more than 20% of any packet type are marked as failed the processing will return a fail status.

-If the number marked as failed for either the ATLAS Algorithm Science, Altimeter science, 1pps Major Frame time at tone, Atmosphere histogram science packets, sm\_hk, ATLAS housekeeping packet E, the LRS LCENT, LRS SCENT, LRS HK packets or Spacecraft packets is more than 5% of its packets then the processing will return a fail status.

Warning– if more than 5% but less than 20% of any packet type are failed the processing will return a warning status.

Pass – if all packet types have less than 5% of any packet type are failed the processing will return a pass status.

#### 6.1.2 . Packet count

#### 6.1.2.1 Processing

For all normal packets the number of expected packets will be compared to the actual number of packets that have passed the checksum validity. The number of expected packets will be the computed based on the start and stop time requested and the packet nominal data rate. Packets that are downlinked by command only will not be checked.

#### 6.1.2.2 Quality Criteria

Fail – if less than 80% of any expected packet type is available (either failed checksum or missing) then the processing will return a fail status.

Warning– if more than 80% but less than 95% of any packet type is available then the processing will return a warning status.

Pass – if each packet type has more than 95% of its expected packet type then the processing will return a pass status.

#### 6.1.3 Received Photons

#### 6.1.3.1 Processing

For each Ground Track (or track pair) the number of received photons will be counted and be compared to an expected return rate for that ground track.

#### 6.1.3.2 Quality Criteria

Fail – if the actual return rate is less than 50% of the expected for any ground track the processing will return a fail status.

Warning– if the actual return rate is more than 50% but less than 70% of the expected for any ground track the processing will return a warning status.

Pass – if the actual return rate for each ground track has greater than 70% of expected returns the processing will return a pass status.

#### 6.2 Browse

Browse will report along track statistics of packet counts and received photons for specified time intervals, plus the actual summary statistics for the entire granule.

#### 6.2.1.1 Received Photons

At a specific time interval compute the number of received photons and number of shots and produce a scatter plot of shots verses received photons.

#### 6.2.1.2 Reference Track

A ground track plot based on downlink lat/lon (ATLAS or s/c ACS location data).

- 7.0 TEST DATA AND RESULTS
- 7.1 Test Data 1
- 7.1.1 Source

TBD

- 7.1.2 Results
- TBD
- 7.2 Test Data 2
- 7.2.1 Source
- TBD
- 7.2.2 Results

TBD

#### 8.0 CONSRAINTS, LIMITATIONS, AND ASSUMPTIONS

#### **Processing exceptions**

1. If SHDR times are zero the data are not processed. Packets are dropped

2. If there are ALT\_SCI packets that do not have the starting major frame packet then the data are not processed. Packets are dropped

#### 9.0 GLOSSARY/ACRONYMS

| ACS          | Attitude Control System                          |
|--------------|--------------------------------------------------|
| APIDs        | Application Packet IDs                           |
| ASAS         | ATLAS Science Algorithm Software                 |
| ATBD         | Algorithm Theoretical Basis Document             |
| ATLAS        | ATLAS Advance Topographic Laser Altimeter System |
| EDOS         | EOS Data and Operations System                   |
| EDS          | Expedited Data Sets                              |
| EOS          | Earth Orbiting Satellite                         |
| GSFC         | Goddard Space Flight Center                      |
| GPS          | Global Positioning System                        |
| GPSR         | Global Positioning Satellite Receiver            |
| HDF          | Hard Data Format                                 |
| ICESat-2     | Ice, Cloud, Land Elevation Satelite-2            |
| ICESat-2 MIS | ICESat-2 Management Information System           |
| IMU          |                                                  |
| LRS          | Laser Reference System                           |
| LZPF         | Level Zero Processing Facility                   |
| MIS          | Management Information System                    |
| PCE          | Photon Counting Electronics                      |

#### PDS Production Data Set

| PEC  | Packet Error Control                                |
|------|-----------------------------------------------------|
| PSO  | ICESat-2 Project Support Office                     |
| SIPS | ICESat-2 Science Investigator-led Processing System |
| TAT  | Time At Tone                                        |
| TBD  | To Be Determined                                    |
| UTC  | Coordinated Time Universal                          |